INDUSTRIE 4.0: DIGITAL, AGIL UND RESSOURCENEFFIZIENT IN DIE ZUKUNFT

Univ. Prof. Dr.-Ing. Dipl.-Kfm. Alexander Sauer Eröffnung der Modellfabrik Bodensee, Konstanz, 09. März 2017

Fraunhofer IPA

Technologieberater und Innovationstreiber

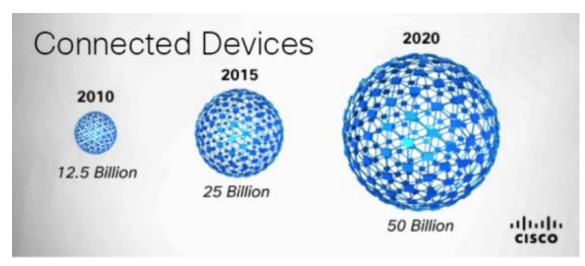
- Drittgrößtes Institut der Fraunhofer-Gesellschaft mit Sitz in Stuttgart
- 1.000 Beschäftigte I 64,2 Mio. Euro Betriebshaushalt I 20,4 Mio. Euro Wirtschaftserträge
- Kompetenz in Produktionstechnik und Automatisierung seit 1959

Hinweis: Zahlen beziehen sich auf das Jahr 2015

Gliederung

- Digitalisierung und Industrie 4.0
- Konsequenzen für die Wertschöpfung
- Umgang mit begrenzten Ressourcen am Beispiel Energie
- Zusammenfassung

Gliederung


- Digitalisierung und Industrie 4.0
- Konsequenzen für die Wertschöpfung
- Umgang mit begrenzten Ressourcen am Beispiel Energie
- Zusammenfassung

Die digitale Welt von heute und morgen

Access-Economy – Holistische Vernetzung der Welt als Basis neuer Business Ecosystems

- Über 3 Milliarden Menschen nutzten im Jahr 2015 das Internet.
- 25 Milliarden Dinge waren im Jahr 2015 über das Internet vernetzt. Im Jahr 2020 werden es voraussichtlich 50 Milliarden Dinge sein.
- Die Anzahl der Services im Internet sind ungezählt.
 Beispiel Apple Store: > 1 Millionen Apps wurden mehr als 75 Milliarden mal heruntergeladen
- Neue Formen des Wirtschaftens entstehen:
 - Sharing Economy
 - Prosumer
 - Industrie 4.0 ...

Quellen: The Internet of Things, MIT Technology Review, statista, cisco

Die Basis: Rechenleistung und Vernetzung

Moore und Metcalfe behalten recht und bestimmen die Möglichkeiten und Wert eines Unternehmens

Vernetzung

Metcalfe:

»Der Nutzen eines Kommunikationssystems wächst mit dem Quadrat der Anzahl der Teilnehmer.«

Leistung

Moore:

»Die Rechnerleistung verdoppelt sich alle 18 Monate.«

Wissen

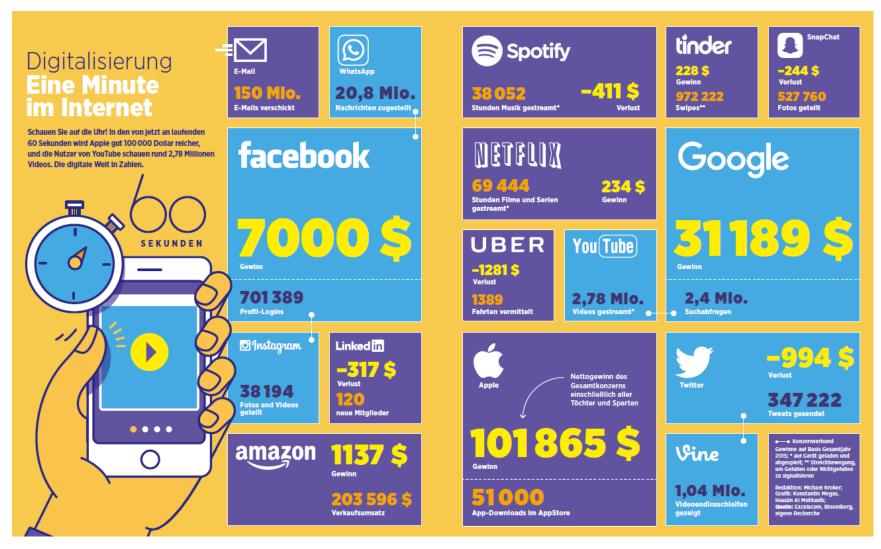
Ökosysteme für Smart Business Modelle

Transparenz

Cyber-physische Systeme

- Real time & at run time
- Everything as a Service

Bildquellen: wikipedia.de, ibm.com, abcnews.com


Sharing Economy

Kalifornien ist der Treiber der Sharing Economy

Eine Minute im Internet...

Quelle: Wirtschaftswoche, Nr. 19, 6.5.2016

Industrie 4.0

Wohin geht die Reise?

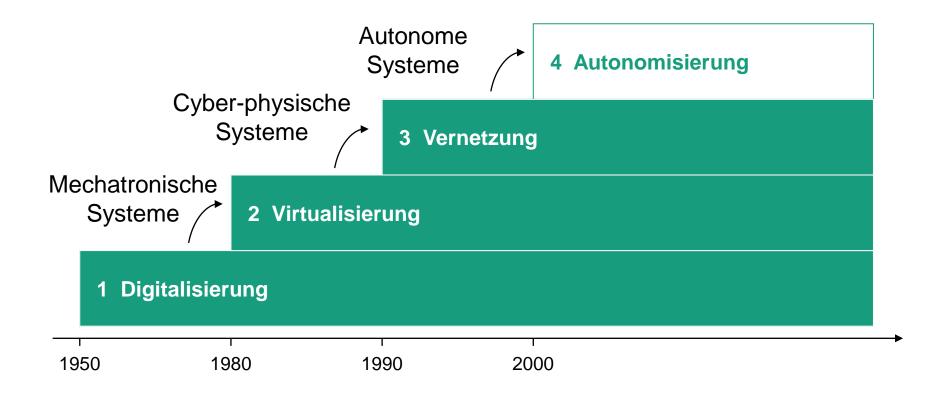
Bildquellen: Fotolia.com / Coloures-pic, http://www.stahl-blog.de/index.php/industrie-4-0-stahl-vernetzt/

Industrie 4.0 – die vierte industrielle Revolution

Ursprüngliche Interpretation des Paradigmenwechsels

- Zentrale Steuerung starr, komplex
- Deterministische Entscheidungen
- Etablierte Wertschöpfungsketten
- Vorgeplant betriebene Produktionssysteme
- Erweiterung durch Upscaling
- Werkstücke/Produkte sind passive Objekte der Bearbeitung
- Starre Anwesenheit der Mitarbeiter

- Dezentrale Selbstorganisation durch Ad hoc Vernetzung
- Entscheidungen kontextabhängig, auf Basis von Echtzeitsimulation
- Virtuelle Ad hoc Organisation, Wertschöpfungsnetze
- Autonome, sich selbst organisierende Produktionseinheiten
- Erweiterung durch "Upnumbering" (Modularisierung)
- Intelligente Werkstücke/Produkte unterstützen aktiv den Produktionsprozess
- Flexibler Einsatz der Mitarbeiter (Verfügbarkeitskalender, Expertisenkataloge)


Quelle: Plattform Industrie 4.0, 2013, Dr. Bernhard Diegner, ZVEI e.V.

Industrie 4.0

Die Entwicklungsstufen der digitalen Transformation

Die fünf Praxisfälle des »Machine Learning«

Beitrag zur Autonomisierung

Klassifizierung

Merkmalsunterscheidung

■ Ist das A, B, C …?

Erkennung von Anomalien

Ausreißer-Erkennung:

■ Ist das i.O.; gehört das hierhin?

Regression

Praxisfall

Vorhersagen:

■ Wie viele? Welcher Zustand?

Clustering

Gruppierung unbekannter Daten

■ Was gehört zusammen?

Verstärkungslernen Passende Strategie lernen

■ War das o.k. so?

Gliederung

- Digitalisierung und Industrie 4.0
- Konsequenzen für die Wertschöpfung
- Umgang mit begrenzten Ressourcen am Beispiel Energie
- Zusammenfassung

Zukunft der Wertschöpfung

nachhaltig, personalisiert, smart

Mass Personalization

Auflösung der Dichotomie Economies of Scale and Scope

Cyberphysische Wertschöpfungssysteme

Vision:

- Alle Produkte im Wertschöpfungssystem entstehen zur Befriedung der persönlichen Bedürfnisse der Kunden
- Jeder Kunde ist Teil des Wertschöpfungssystems

Innovationstreiber Digitalisierung

Stufen der digitalen Transformation

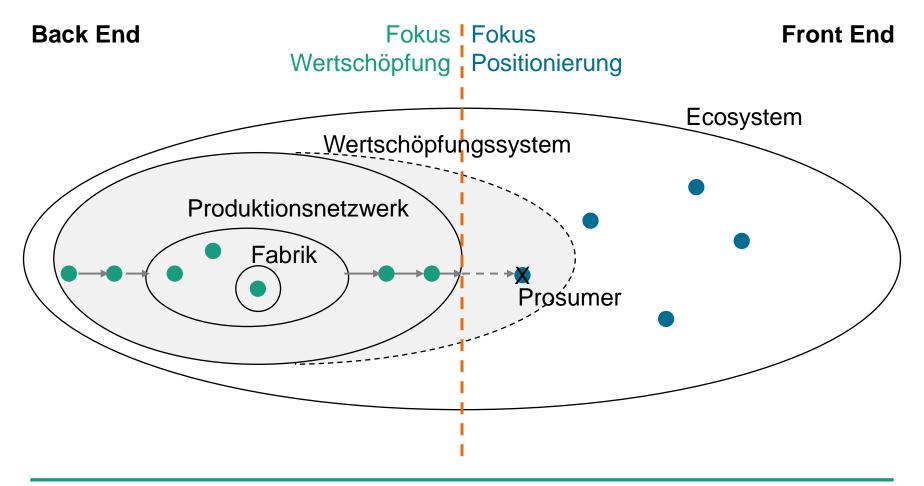
- 1. Digitalisierung
- Virtualisierung
- Vernetzung
- 4. Autonomisieung

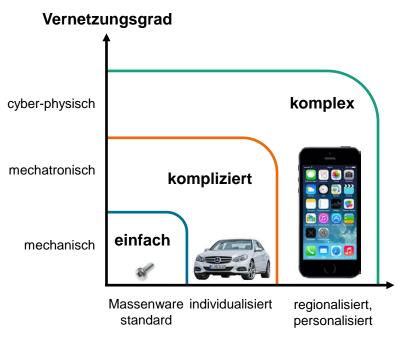
Mass Sustainability

Entkopplung von
Ressourcenverbrauch und
Wohlstand

Ultraeffiziente Wertschöpfungssysteme

Vision:


- Alle Produktions-faktoren im Wertschöpfungssystem fließen in Produkte
- Alle Produkte bleiben im Wertschöpfungssystem


Aufbau von Ecosystems

Integrierte Gestaltung von Front und Back End

Wandel der Produktarchitektur aufgrund von steigender Vernetzung und Personalisierung

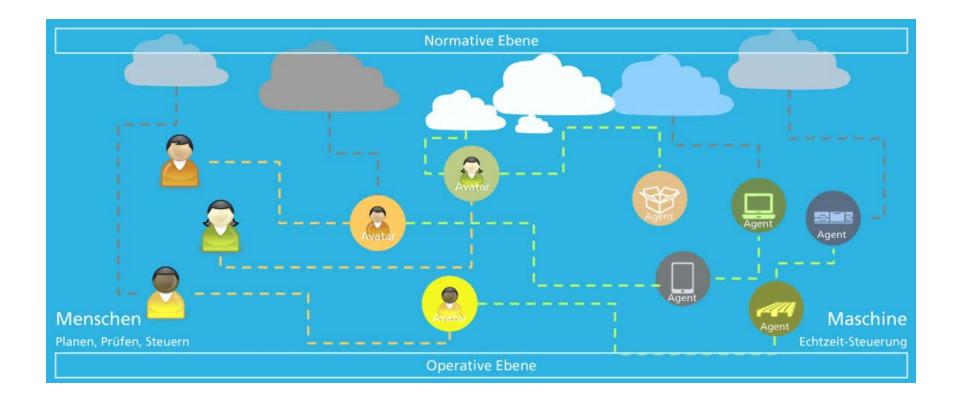
Offene Architekturen in Verbindung mit cyber-physischen Systeme legen die Basis für "Big Bang Disruptions"

- Minimale Komplexität bei Maximum an Personalisierung und Skalen-effekten
- Kunde beteiligt sich am Personalisierungsprozesses
- Innovationsfokus: Ecosystem, personalisierte Assistenz und HMI
- Erfolgsfaktor: Offenheit

Personalisierungsgrad

Quellen: Wildemann, H.: Wachstumsorientiertes Kundenbeziehungsmanagement statt König-Kunde-Prinzip; Seemann, T.: Einfach produktiver werden – Komplexität im Unternehmen senken; Bildquellen: apple.de

Automatisierung in der industriellen Produktion


Die klassische Automatisierungspyramide - Ein Auslaufmodell?!

Unternehmensebene			ERP		
Betriebsebene			MES		
Leitebene			SCADA		
Steuerungsebne		SPS			
Feldebne	Aktor/ Sensor				
	Fertigung Prozess				

Social Networked Industry

Ein Zukunftsbild der industriellen Produktion

Fraunhofer IML

Cloudbasierte Plattformen als Backbone von Manufacturing-Ecosystemen

Das Rennen um die Plattform der Zukunft hat begonnen

Bausteine der vierten industriellen Revolution

Öffnung neuer Gestaltungs- und Optimierungsdimensionen für Wertschöpfungssysteme (Vertikale Integration)

Infrastruktur (physisch, digital)					
Cyber-physisches System					
Produktlebenszyklus (wertschöpfend = personalisiert + nachhaltig)					
Zusammenarbeit					
Physische Systeme (handeln, messen, kommunizieren)	Menschen (entscheiden, gestalten, kommunizieren)				
Reflektion					
Digitaler Schatten (Echtzeitmodell)					
Transaktion					
Softwaredienst (machine-skills, Apps, Plattformdienste)					
Interaktion					
Cloudbasierte Plattformen (Privat, Community, Public)					
Preskription Preskription					
Analytik (Big Data/maschinelles Lernen)					
Kommunikation					
Internet of Everything (Menschen, Dienste, Dinge)					

Business Ecosystems

365FarmNet

»Farmnet 365« - eine Initiative aus dem Landmaschinenbau

Online Tracking

Echtzeitzugriff auf die Informationen zu

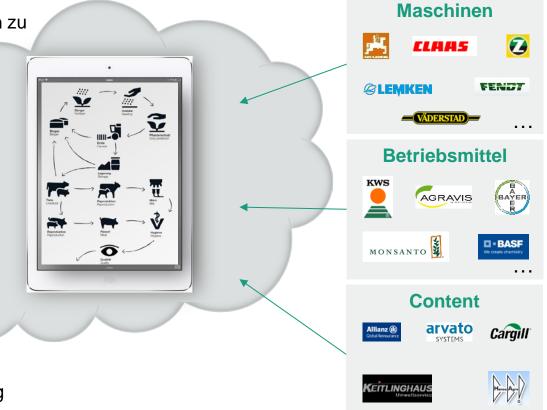
jeder Zeit an jedem Ort

■ Traceability

Lückenlose, automatisierte Dokumentation

Transparenz Integration aller Prozesse

Effizienz
Entscheidungshilfe


und Wissenstransfer

■ Qualität

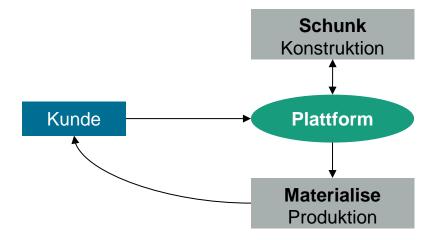
Tracking, Dokumentation und rechtzeitige Warnung

Analyse

Vorhersagen, Big Data Verarbeitung

Quelle: farmnet

Geschäftsmodell-Innovation


Fallbeispiel Schunk: eGRIP

Seit Anfang 2015 sind anhand eines CAD-Files eines zu transportierenden Teils passende Greifer bei Schunk bestellbar.

- Reduzierung der Bestellzeit und Sicherstellen von hohem Nutzen für den Kunden durch Integration des Kunden in den Entwicklungsprozess
- Kommunikation erfolgt über eine Online-Plattform
- Fertigung mit 3D-Druck wird vom Partnerunternehmen Materialise übernommen

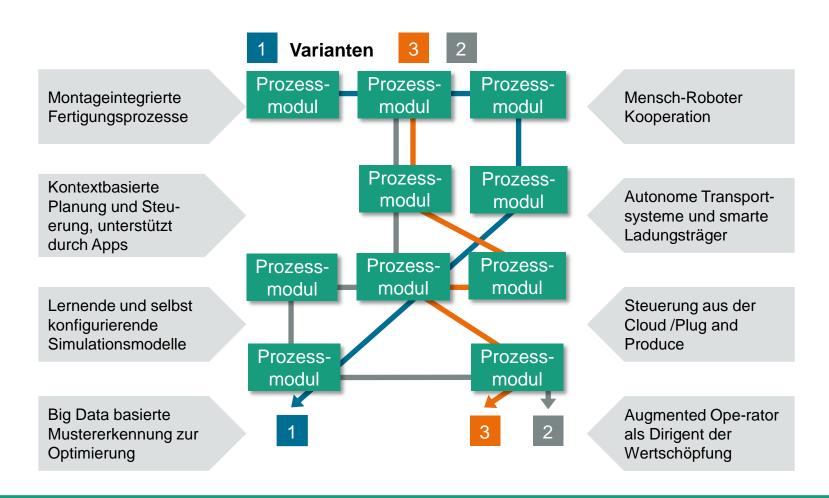
[Schunk GmbH; Materialise]

Geschäftsmodell-Innovation

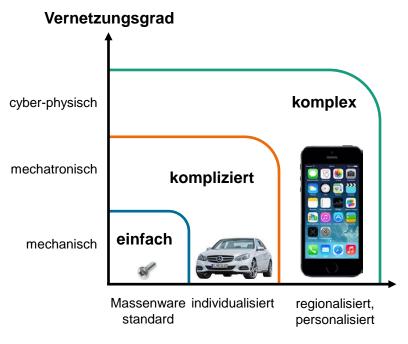
Fallbeispiel Wetropa: myFoam.net

Seit Anfang 2016 sind Fräseinlagen über eine Online-Plattform bestellbar.

- Erfassung der zu platzierenden Werkzeuge per Smartphone
- Konfiguration der Einlage über eine Online-Plattform
- Ableitung und Einsteuerung der Fertigungsaufträge direkt aus der Online-**Plattform**
- Reduzierung der Bestellzeit und Sicherstellen von hohem Nutzen für den Kunden durch Integration des Kunden in den Entwicklungsprozess



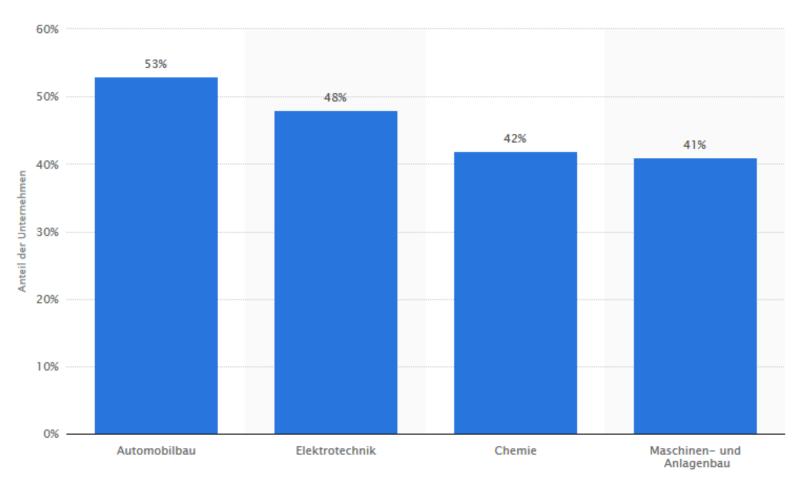
Automobilproduktion morgen


Entkopplung von Band und Takt durch flexibel vernetzbare und skalierbare Prozessmodule im Produktionsraum

Wandel der Produktarchitektur aufgrund von steigender Vernetzung und Personalisierung

Automobile werden Cyber-Physical Systems

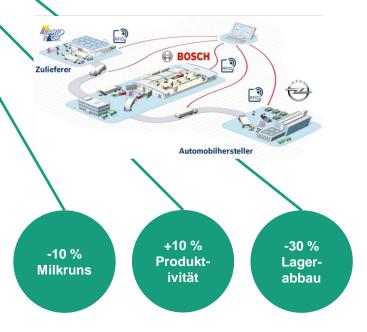
- Vernetzung mit der Mobilitäts-Umwelt bietet Kundennutzen
- Vernetzung mit Kundengeräten bietet zusätzlichen Kundennutzen
- Der Kunde personalisiert das Interieur eigenständig
- Eine Hardware viele Erscheinungsbilder


Personalisierungsgrad

Quellen: Wildemann, H.: Wachstumsorientiertes Kundenbeziehungsmanagement statt König-Kunde-Prinzip; Seemann, T.: Einfach produktiver werden – Komplexität im Unternehmen senken; Bildquellen: apple.de

Anteil der Unternehmen in Deutschland, die 2015 bereits spezielle Anwendungen für Industrie 4.0 nutzen

Quellen: Statistisches Bundesamt (2015), Bitkom Research, ARIS, Fraunhofer IAO


Unternehmenspotenziale durch Industrie 4.0

Experten erwarten eine Gesamt-Performance-Steigerung von 30–50 % in der Wertschöpfung

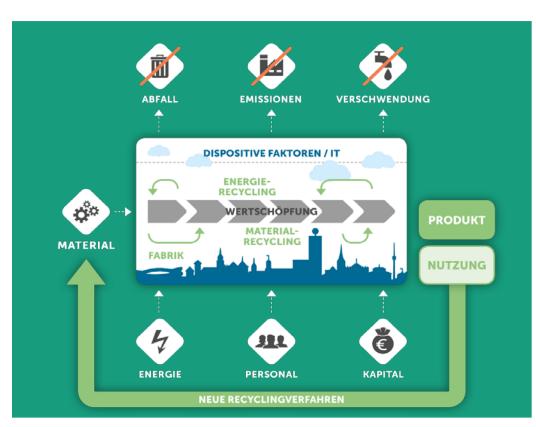
Abschätzung der Nutzenpotenziale

Kosten	Effekte	Potenziale
Bestandskosten	Reduzierung SicherheitsbeständeVermeidung Bullwhip- und Burbidge- Effekt	-30 bis -40 %
Fertigungskosten	 Verbesserung OEE Prozessregelkreise Verbesserung vertikaler und horizontaler Personalflexibilität Einsatz von Smart Wearables 	-10 bis -30 %
Logistikkosten	Erhöhung Automatisierungsgrad (milk run, picking,)Smart Wearbles	-10 bis -30 %
Komplexitätskosten	 Erweiterung Leitungsspannen Reduktion trouble shooting Prosumer Modell Everything as a Service (XaaS) 	-60 bis -70 %
Qualitätskosten	■ Echtzeitnahe Qualitätsregelkreise	-10 bis -20 %
Instandhaltungskosten	 Optimierung Lagerbestände Ersatzteile Zustandsorientierte Wartung (Prozessdaten, Messdaten) Dynamische Priorisierung 	-20 bis -30 %

Pilotprojekt von Bosch, bei dem der gesamte Versandprozess über das werksinterne Logistikzentrum in einem Industrie 4.0-Projekt neu strukturiert wurde.

Quelle: IPA/Bauernhansl, Bosch

Gliederung


- Digitalisierung und Industrie 4.0
- Konsequenzen für die Wertschöpfung
- Umgang mit begrenzten Ressourcen am Beispiel Energie
- Zusammenfassung

Ressourceneffizienz in der Produktion

Ultraeffizienzfabrik durch Digitalisierung und Biologisierung

Digitalisierung

Das Energiesystem im Wandel

- Erneuerbare Energien auf Rekordkurs:
 - Sie decken fast ein Drittel des inländischen Stromverbrauchs
 - Deutschland hat mit 44.947 Megawatt in Europa die meiste Windleistung installiert.
 - Im November 2015 wurde so viel Offshore-Windenergie wie im gesamten Jahr 2014 erzeugt
- Herausforderung Dunkelflaute:
 - Im Jahr 2016 wurden 82 konventionelle Stromerzeuger mit mehr als 12 GW Leistung zur Stilllegung angemeldet, weil sich der Betrieb nicht mehr rentiert

Quelle: Agora Energiewende (2016), NTV Wirtschaft (2017), strom-report /windenergie/ (2017)

Energie

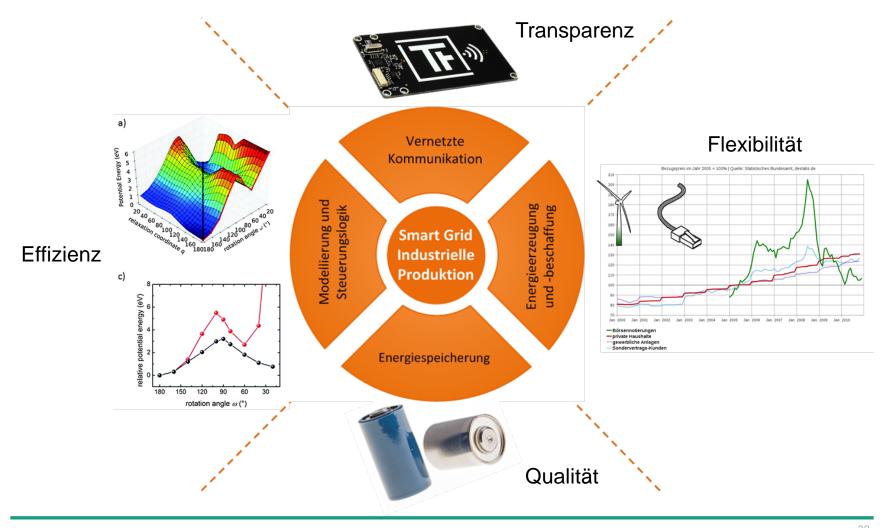
Steigender Einfluss auf die Produktionssteuerung

Energienutzung

Produktionsleistung

Flexibilität

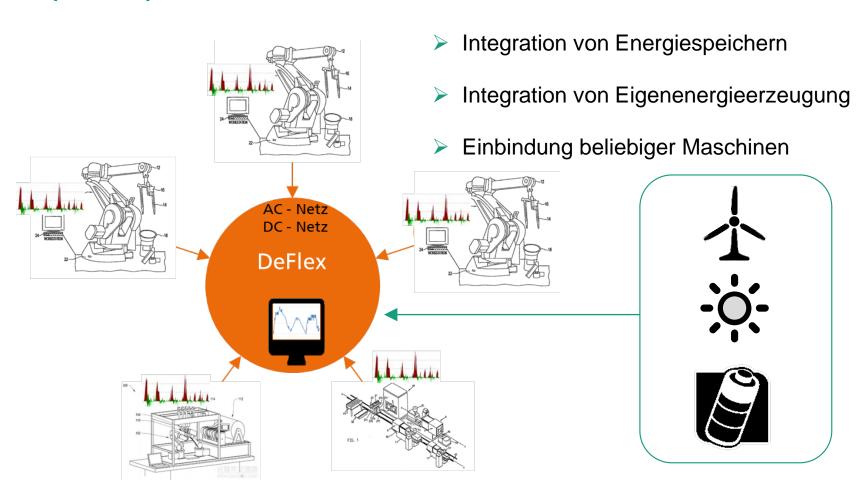
Kosten

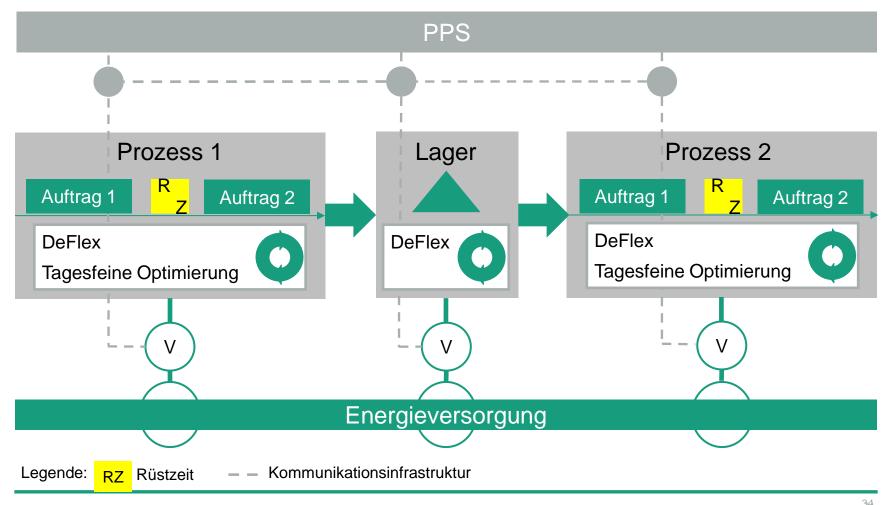

Effizienz

Qualität

Produktionsplanung und -steuerung

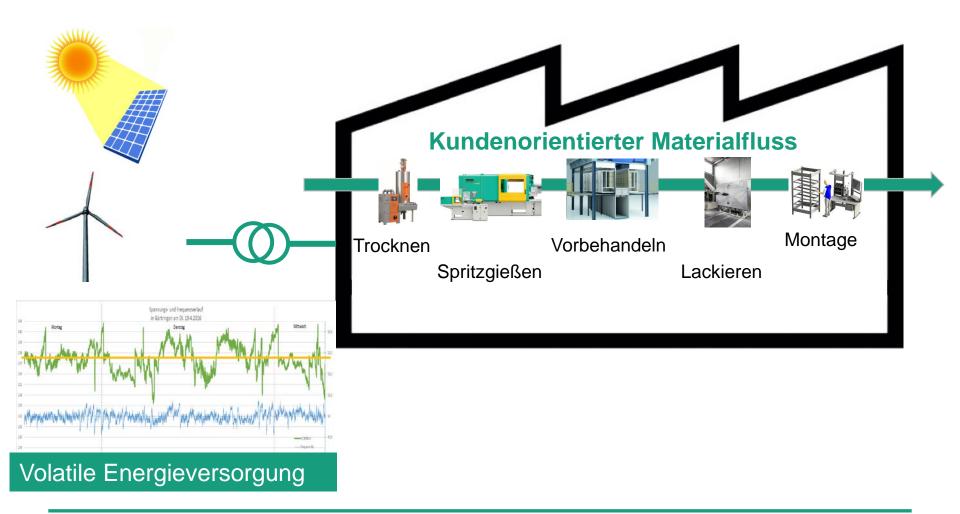
Smart Energy in Production


Unternehmen werden energetische Prosumer


Das Energiesystem Fabrik

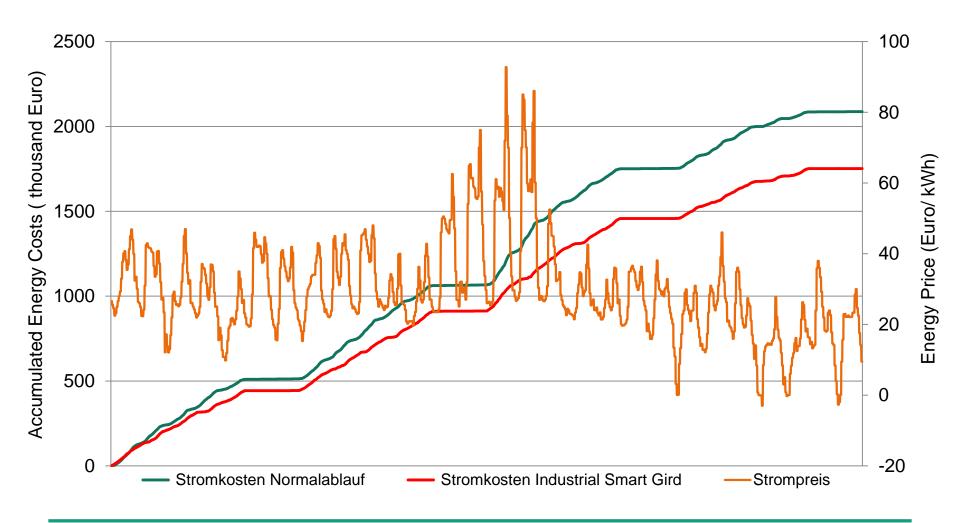
Potenziale durch dezentrale Steuerung des Energieverbraus (DeFlex)

Grundkonzept dezentraler energieflexibler Steuerung


Kommunikationsstruktur

Dezentrale energieflexible Steuerung

Beispiel – Produktionslinie eines Spritzgießteils



Individueller Vorteil und Systemdienlichkeit

Beispiel – Produktionslinie eines Spritzgießteils

Gliederung

- Digitalisierung und Industrie 4.0
- Konsequenzen für die Wertschöpfung
- Umgang mit begrenzten Ressourcen am Beispiel Energie
- Zusammenfassung

Zusammenfassung

Industrie 4.0: Digital, agil und ressourceneffizient in die Zukunft

- Die Entwicklung digitaler Technologien findet statt
- Die digitale Transformation in Richtung Industrie 4.0 ist eine wahrscheinliche Zukunft
- Individualisierung und Ressourceneffizienz sind wesentliche Herausforderungen für die Industrie
- Der Aufbau von (plattformbasierten) Eco-Systems bildet die Basis für Agilität,
 Kundenintegration und operative Exzellenz
- Mit digitalen Technologien ist ein deutlicher Sprung in der Ressourceneffizienz möglich
- Das Energiesystem zeigt beispielhaft die signifikanten ressourcenseitigen Veränderungen für die produzierende Zukunft

Vielen Dank für Ihre Aufmerksamkeit!

Wir produzieren Zukunft
Nachhaltig. Personalisiert. Smart.

Univ.-Prof. Dr.-Ing. Dipl.-Kfm. Alexander Sauer
Leiter Institut für Energieeffizienz in der Produktion EEP
Leiter Bereich Ressourceneffiziente Produktion, Fraunhofer IPA

Telefon +49 711 970-3600 alexander.sauer@ipa.fraunhofer.de

www.ipa.fraunhofer.de www.eep.uni-stuttgart.de

